Вып. 1(41), 2016

ISSN 2307-2091 (Print) 

ISSN 2500-2414 (Online)

UDC 552.63+523.681.2

Features of mineral and geochemical composition of Chelyabinsk meteorite 

S. V. Berzin, Yu. V. Erokhin, K. S. Ivanov, V. V. Khiller

A meteorite is a chondrite and belongs to petrological type LL5. Meteorite fragments have higher contents of Na, U, Ag and lower contents of Cr, Mn, Ni, Zn, and Cs compared with an average of ordinary chondrites. The meteorite is composed of olivine, orthopyroxene, clinopyroxene, plagioclase, chromite, metals of iron and nickel, sulfides, Cl-apatite and glass, which has feldspar composition. During high-temperature recrystallization of the meteorite matrix, sulfide and Fe, Ni-metals are segregated in linear zones, interleaved with silicate areas. In black meteorite fragments, shock veins and sulfide micro-branching veins, formed by the effects of three stages of impact, accompanied by full or partial melting of meteoritic material, are observed. In fragments of gray chondrite, one stage of impact is observed giving rise to the formation of black veins. Pores are formed by accretion of solid fragments of the meteorite account for 2–3% of chondrites. Plagioclase, clinopyroxene and olivine, located freely in the pores, have complete crystalline facets. They were captured in the pores during their formation and indicate that undifferentiated formations, which later became the chondrules, and minerals that are the products of the differentiation of silicate substances, were in the parental environment of chondrites.

Keywords: Ural; Chelyabinsk meteorite; chondrite; mineralogy; geochemistry; shock veins; sulfide micro veins; porous space.

 

Особенности минерального и геохимического состава метеорита «Челябинск»

Берзин С. В., Ерохин Ю. В., Иванов К. С., Хиллер В. В.

Фрагменты метеорита состоят на 25–35 % из хондр, на 65–75 % из матрицы и содержат не более 3–4 % железо-никелевых металлов и сульфидов. Метеорит является каменным хондритом и относится к петрологическому типу LL5. Во фрагментах метеорита отмечены повышенные содержания Na, U, Ag и пониженные содержания Cr, Mn, Ni, Zn, Cs по сравнению со средними содержаниями в обыкновенных хондритах. Метеорит сложен оливином, ортопироксеном, клинопироксеном, плагиоклазом, хромитом, металлами железа и никеля, сульфидами, хлорапатитом и стеклом полевошпатового состава. В ходе высокотемпературной перекристаллизации матрицы метеорита произошла сегрегация сульфидов и интерметаллидов в линейные зоны, перемежающиеся с участками, сложенными исключительно силикатами. В черных фрагментах метеорита наблюдаются ударные прожилки и ветвящиеся сульфидные микропрожилки, образовавшиеся в результате трех этапов импактного воздействия, которые сопровождались полным или частичным плавлением метеоритного вещества. Во фрагментах серого хондрита фиксируется один этап ударного воздействия, который привел к формированию черных прожилков. Зерна троилита в сером хондрите с поверхности окислены, что, по всей видимости, произошло при взаимодействии с водой во внеземных условиях. В черном хондрите около 2–3 % объема слагают поры, образовавшиеся при аккреции твердых фрагментов метеорита. Находящиеся свободно в порах полностью ограненные кристаллы плагиоклаза, клинопироксена и оливина были захвачены в поры при их формировании и свидетельствуют об одновременном нахождении в среде формирования хондрита как недифференцированных образований, ставших впоследствии хондрами, так и отдельных минералов, являющихся продуктами дифференциации силикатного вещества.

Ключевые слова: Урал; метеорит «Челябинск»; хондрит; минералогия; геохимия; ударные прожилки; сульфидные микропрожилки; поровое пространство.

 

REFERENCES

2013, Chelyabinskiy Bolid. Soobshchenie Instituta dinamiki geosfer rossiyskoy akademii nauk [Chelyabinsk Bolide. Report of Institute of Geosphere Dynamics, Russian Academy of Sciences], Available at: http://www.ras.ru/news/shownews.aspx?id=1da2959b-902f-46b2-9f1f-0c62d19740e8#content

Chelyabinsk. Мeteoritical Bulletin Database. Available at: http://www.lpi.usra.edu/meteor/metbull.php?code=57165

2013, Russia meteor not linked to asteroid Flyby, NASA. Available at: http://www.nasa.gov/mission_pages/asteroids/news/asteroid20130215.html

Dreeland L., Jones R. H. 2011, Origin and development of phosphate minerals in metamorphosed LL chondrites. 42nd lunar and planetary science conference, Abstract no. 2523.

Horz F., Cintala M. J., See T. H., Le L. 2005, Shock melting of ordinary chondrite powders and implications for asteroidal regoliths. Meteoritics & Planetary Science, vol. 40, no. 9-10, pp. 1329-1346.

Hutson M., Ruzicka A., Brown R. 2013, A pyroxene-enriched shock melt dike in the buck mountains 005 (L6) chondrite. 44th lunar and planetary science conference, Abstract no. 1186. Available at: http://www.lpi.usra.edu/meetings/lpsc2013/pdf/1186.pdf

Krasnova N. I., Petrov T. G. 1997, Genezis mineral’nykh individov i agregatov [The genesis of mineral indi- viduals and aggregates], 228 p.

Lewis J. A., Jones R. H. 2013, Phosphate Mineralogy of Petrologic Type 4-6 L Ordinary Chondrites. 44th lunar and planetary science conference, Abstract no. 2722. Available at: http://www.lpi.usra.edu/meetings/lpsc2013/pdf/2722.pdf

Sasso M. R., Macke R. J., Boesenberg J. S. et al. 2009, Incompletely compacted equilibrated ordinary chondrites. Meteoritics & Planetary Science. vol. 44, no. 11. pp. 1743–1753.

Sun S., McDonough W. F. 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publication, vol. 42, pp. 313–345.

Tomeoka K., Yamahana Y., Sekine T. 1999, Experimental shock metamorphism of the Murchison CM carbonaceous chondrite. Geochimica et Cosmochimica Acta, vol. 63, Is. 21, pp. 3683–3703.

Tomkins A. G., Weinberg R. F., Schaefer B. F., Langendam A. 2013, Disequilibrium melting and melt migration driven by impacts: Implications for rapid planetesimal core formation. Geochimica et Cosmochimica Acta, vol. 100, pp. 41–59.

Wasson J. T., Kallemeyn G. W. 1988, Composition of Chondrites. Philosophical Transactions of the Royal Society, London, pp. 535–544.

Weisberg M. K., McCoy T. J., Krot A. N. 2006, Systematics and Evaluation of Meteorite Classification. Meteorites and the Early Solar System II, Tucson, pp. 19–52.

Zinov’eva N. G. 2001, Petrologiya obyknovennykh khondritov. Avtoreferat dissertatsii doktora geologichesko-mineral’nykh nauk [Petrology of ordinary chondrites. Synopsis of the dissertation of the doctor of geological-mineral sciences], 53 p.

Zinov’eva N. G., Marakushev A. A., Granovskiy L. 2010, Usloviya formirovaniya ravnovesnykh i neravnovesnykh khondritov [Conditions of formation of equilibrium and non-equilibrium chondrites]. Magmatizm i metamorfizm v istorii Zemli: tezisnyy doklad XI Vserossiyskogo petrograficheskogo soveshchaniya [Magmatism and metamorphism in the history of Earth: a succinct report of the XI All-Russian petrographic meeting], vol. 1, pp. 251–252.

Лицензия Creative Commons
Все статьи, размещенные на сайте, доступны по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная