2-18-9

Study of hazardous natural and man-made geological processes using geophysical methods

V. A. Davydov, V. A. Shchapov, G. A. Tsay

 

DOI http://dx.doi.org/10.21440/2307-2091-2018-2-65-71

V. A. Davydov et al. / News of the Ural State Mining University 2 (2018) 65-71


The relevance of the work is conditioned by the need to prevent damage to the modern infrastructure of dangerous geological processes and phenomena.
The purpose of the work is to show the principal possibility of studying dangerous natural and man-made geological processes with the help of complex geophysical studies.
Research methodology: electrical and low-water seismic explorations were used as the main methods; radiometry was used on one of the objects. Electric prospecting works were carried out by method of vertical electric sounding (VES). Seismic exploration was carried out by the method of refracted waves (IWS) in combination with multi-channel analysis of surface waves (MASW).
Results. The low-depth seismic exploration was recognized as an effective method for identifying underground voids formed as a result of the action of the processes of karst formation or due to mining operations. This is connected with a sharp change in the elastic properties in the area of the void space and areas of soil desalinization. This is expressed in the appearance of contrast anomalies of lower values against the background of a relatively homogeneous distribution in the surrounding rocks. Electrical testing helps with the structural and lithological subdivision of the soil electric properties, and also allows you to highlight the fractured and flooded areas. Radiometry makes it possible to specify the areas of distribution and boundaries of indigenous breeds of different compositions.
Conclusion. The integration of geophysical methods allows getting more information about the changes of physical properties of soils. This gives the opportunity to identify and highlight areas of exposure to hazardous geological processes. The results of the work indicate the high efficiency of geophysical research in the study of dangerous geological processes of natural and man-made origin.

Keywords: underground cavities; karst; suffusion; subsidence; fluid leakage; shallow seismics; electromagnetics.

The work has been done at a partial assistance of the fundamental research program UB RAS, projects No. 15–2–5–31 and No. 18–5–5–38.

 

REFERENCES

1. Senin L. N., Senina T. E. 2005, Seysmicheskaya stantsiya «Sinus» [A seismic station called “Sinus”]. Pribory i tekhnika experimenta [Instruments and Experimental Techniques], no. 5, pp. 162–163.
2. Park C. B., Miller R. D., Xia J. 1999, Multichannel analysis of surface waves. Geophysics, vol. 64 (3), pp. 800–808.
3. Socco L. V., Foti S., Boiero D. 2010, [Surface-wave analysis for building near-surface velocity models – Established approaches and new perspectives. Geophysics, vol. 75 (5), pp. 75A83–75A102.
4. 1990, Interpretatsiya dannykh seysmorazvedki: spravochnik [Interpretation of seismic data: A handbook], pod red. O. A. Potapova [edited by O. A. Potapov]. Moscow, 448 p.
5. Ivanov J., B. Leitner W., Shefchik T., Schwenk T. J., Peterie S. L. 2013, Evaluating hazards at salt cavern sites using multichannel analysis of surface waves. The Leading Edge, no. 32, pp. 289–305.
6. Sloan S. D., Peterie S. L., Miller R. D., Ivanov J., Schwenk T. J., McKenna J. R. 2015, Detecting clandestine tunnels using near-surface seismic techniques. Geophysics, vol. 80 (5), pp. EN127–EN135.
7. Ovsyuchenko A. N., Kalinina A.V., Ammosov S. M., Vakarchuk R. N., Novikov S. S., Larkov A. S., Marakhanov A.V. 2013, Ispol’zovaniye seysmorazvedki metodom MASW v seysmotektonicheskikh issledovaniyakh (na primere Dal’nego Vostoka Rossii) [The use of seismic exploration by the MASW method in seismotectonic studies (on the example of the Russian Far East)]. Inzhenernyye izyskaniya [Engineering Survey], no. 2, pp. 38–48.
8. Antipov V. V., Ofrichter V. G. 2016, Sovremennyye nerazrushayushchiye metody izucheniya inzhenerno-geologicheskogo razreza [Modern methods of NDT study of engineering-geological section]. Vestnik PNIPU. Stroitel’stvo i arkhitektura [PNRPU Construction and Architecture Bulletin], vol. 7, no. 2, pp. 37–49.
9. Kaminsky A. E. Zond-programmy dlya geofiziki [Zond-programs for Geophysics]. URL: http://zond-geo.ru/software
10. Zhukov A. A., Prigara A. M., Pushkareva I. Yu., Tsarev R. I. 2015, Opyt primeneniya komplexa geofizicheskikh metodov dlya vyyavleniya karstovykh polostey v otvalakh kaliynykh rudnikov [An attempt to apply geophysical methods to detect karstic cavities in the dumps of potassic mines]. GIAB [Mining Informational and Analytical Bulletin], no. 5, pp. 120–130.
11. Pisetski V. B., Abaturova I. V., Storozhenko L. A., Savintsev I. A., Serkov V. A. 2016, The Study of Karst Processes According to the Electromagnetic and Seismic Observations. 12th Conference and Exhibition Engineering Geophysics 2016 (from 25 to 29 April 2016). Anapa, Russia, pp. 161–164.
12. Katayev V. N., Kandebskaya O. I. 2010, Geologiya i karst goroda Kungura [Geology and karst of the Kungur city]. Perm', 231 p.
13. Davydov V. A. 2010, Primeneniye maloglubinnoy seysmorazvedki dlya izucheniya podrabotannykh territoriy [Applying shallow seismic exploration for the study of developed areas]. Izvestiya vuzov. Gornyi zhurnal [News of the Higher Institutions. Mining Journal], no. 4, pp. 111–116.
14. Sazonov V. N., Ogorodnikov V. N., Koroteev V. A., Polenov Yu.A. 1999, Mestorozhdeniya zolota Urala [Gold deposits of the Urals]. Ekaterinburg, 570 p.
15. Davydov V. A. 2013, Obnaruzheniye podzemnykh pustot antropogennogo kharaktera s pomoshch’yu geofizicheskikh metodov [Detecting underground cavities of anthropogenic nature with the help of geophysical methods of engineering surveying], no. 7, pp. 52–57.

Лицензия Creative Commons
All articles posted on the site are available under the Creative Commons Attribution 4.0 Global License.