Home

DOI: dx.doi.org/10.21440/2307-2091-2016-2-32-41

Sulfur isotopic composition of sulfur deposits in Ural karst caves pdf (In English)

O. Ya. Chervyatsova, S. S. Potapov, S. A. Sadykov 

The subject of the study is the sulfur isotopic composition of sulfate deposits (minerals) of caves. The purpose of the study is the construction of mineral and speleogenesis model based on sulfur isotope study of primary and secondary mineral deposits. Authors conducted sampling of sulfate mineral formations for research in the Kungur and Kinderlinsk caves. Mineralogical and isotopic studies were done at the Institute of Mineralogy, Ural Branch of Russian Academy of Sciences (Miass). Diagnosis of minerals was made on diffractometer DRON-2.0, CuKa-emission. Determination of the isotopic composition of sulfur was carried out on a mass spectrometer DeltaPlus Advantage, manufactured by Thermo Finigan, and linked to the elemental analyzer EA Flash1112 with interface ConFlo III. The analysis error is 0,27 ‰ CDT. Authors studied the isotopic composition of sulfur of secondary sulfate minerals formed in two caves of the Urals – sulfate karst in the Kungur cave and carbonate karst in Kinderlinsk cave. Primary chemogenicsedimentary rocks (gypsum and anhydrite) in the Kungur cave have the isotopic composition δ34S ranging from 10.09 ‰ to +12,32 ‰, CDT, which corresponds to a typical composition for the Lower Permian marine evaporites. In the newly formed sulfate minerals (gypsum, mirabilite) were no significant changes in the isotopic composition of sulfur in comparison to sulfate of bedrock, which indicates their formation in the process of dissolution and re-deposition of primary sedimentary sequence. In the Kinderlinsk cave newly formed sulfate minerals are characterized by a slight sulfur isotopic composition δ34S, ranging from -23,51 ‰ to -15,288 ‰ CDT. A similar lighter sulfur isotopic composition is typical for mineral formations that are products of bacterial sulfate reduction. Authors assume formation of secondary gypsum from compounds of organically bound sulfur of bituminous substance of accommodating limestone, which oxidizes in oxygen conditions to
sulfates with participation of sulfur-oxidizing (thionic) bacteria.

Keywords: isotopes of sulfur; sulfates; secondary mineral formations; carbonate and sulfate karst caves; sulfate reduction; sulfuric acid speleogenesis; genesis of minerals.

 

REFERENCES

Potapov S. S., Parshina N. V., Potapov D. S., Kadebskaya O. I., Sivinskikh P. N. 2006, Speleomineralogiya (na primere Kungurskoy ledyanoy peshchery) [Speleo Mineralogy (on example of Kungur ice cave)]. Teoriya, istoriya, filosofiya i praktika mineralogii: Materialy IV Mezhdunarodnogo mineralogicheskogo seminara. 17-20 maya 2006 goda [The theory, history, philosophy and practice of Mineralogy: Proceedings of the IV International Mineralogical Seminar. May 17–20, 2006], pp. 71–74.
Maksimovich N. G., Potapov S. S., Meshcheryakova O. Yu. 2010, Natechnye tekhnogennye mineral’nye obrazovaniya [Dripstones technogenic mineral formations]. Peshchery: sb. nauch. tr. Perm’: Estestvennonauchnyy institut Permskogo gosudarstvennogo universiteta [Caves: collection of scientific works Perm Natural Sciences Institute of Perm State University], vol. 33. pp. 72–81.
Potapov S. S. 2011, Speleokriomineralogenez (vvedenie v problematiku, mineralogiya, kristallomorfologiya, usloviya kristallogeneza na primere ural’skikh peshcher karbonatnogo i sul’fatnogo karsta) [Speleo-cryo-mineral genesis (introduction to the problems, mineralogy, crystal morphology, crystallogenesis conditions on the example of the Ural caves karst carbonate and sulfate)]. Materialy simpoziuma “Mineralogicheskie perspektivy” [Materials of Symposium “Mineralogical prospects”.], Syktyvkar, pp. 256–260.
Potapov S. S., Parshina N. V., Chervyatsova O. Ya. 2013, K mineralogii peshchery Shul’gan-Tash (Bashkortostan) [Cave mineralogy of Shulgan-Tash (Bashkortostan)]. Mineralogiya tekhnogeneza-2013 [Mineralogy technogenesis 2013], pp. 91–105.
Potapov S. S., Parshina N. V., Chervyatsova O. Ya., Kuz’mina L. Yu. 2013, K mineralogii peshchery Kinderlinskaya (Bashkortostan) [Cave mineralogy of Kinderlinsk (Bashkortostan)]. Mineralogiya tekhnogeneza-2013 [Mineralogy technogenesis 2013], pp. 106–119.
Potapov S. S., Parshina N. V., Sadykov S. A. 2014, Sovremennoe mineraloobrazovanie v Kungurskoy ledyanoy peshchere [Modern mineralization in the Kungur ice cave]. Kompleksnoe ispol’zovanie i okhrana podzemnogo prostranstva. Sbornik dokladov Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Perm’: GI UrO RAN [Complex use and protection of underground space. Proceedings of the International scientific-practical conference], pp. 81–91.
Sadykov S. A., Potapov S. S. 2011, Izotopnyy sostav ugleroda v karbonatnykh speleotemakh [The isotopic composition of carbon in the carbonate speleothemes]. Litosfera [Litosfera], no. 5, pp. 102–110.
Belogub E. V., Matur R., Sadykov S. A., Novoselov K. A. 2015, Pervye dannye ob izotopnom sostave medi i sery v mineralakh iz rud Udokanskogo mestorozhdeniya medistykh peschanikov (Zabaykal’e) [The first data on the isotopic composition of copper and sulfur in minerals from ores Udokan copper sandstones (Baikal)]. Metallogeniya drevnikh i sovremennykh okeanov [Metallogeny of ancient and modern oceans], pp. 39–42.
Tseluyko A. S., Maslennikov V. V., Ayupova N. R., Sadykov S. A. 2015, Izotopnyy sostav sery sul’fidov produktov razrusheniya paleokuril’shchikov Yubileynogo mednokolchedannogo mestorozhdeniya (Yuzhnyy Ural) [The isotopic composition of sulphide sulfur product destruction paleo smokers Jubilee massive sulfide deposit (Southern Urals)]. Mineralogiya [Mineralogy], no. 4, pp. 103–111.
Klimchuk A. B. 2007, Rol’ speleogeneza v formirovanii sernykh mestorozhdeniy Predkarpat’ya [Speleogenesis role in the formation of sulfur deposits of Ciscarpathians], Simferopol’, 64 p.
Forti P., Galdenzi S., Sarbu S. M. 2002, The hypogenic caves: a powerful tool for the study of seeps and their environmental effects. Continental Shelf Research, no. 22, pp. 2373–2386.
Klimchuk A. B. 2013, Gipogennyy speleogenez, ego gidrogeologicheskoe znachenie i rol’ v evolyutsii karsta [Hypogene speleogenesis its hydrogeological significance and role in the evolution of karst], Simferopol’, 180 p.
Egemeier S. J. 1981, Cavern development by thermal waters. NSS Bulletin, no. 43, pp. 31–51.
Hose L. D., Pisarowicz J. A. 1999, Cueva de Villa Luz, Tabasco, Mexico: reconnaissance study of an active sulfur spring cave and ecosystem. Journal of Cave and Karst Studies, no. 61, pp. 13–21.
Hose L. D., Palmer A. N., Palmer M. V., Northup D. E., Boston P. J., DuChene H. R. 2000, Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chemical Geology, vol. 169, no. 3, pp. 399–423.
Galdenzi S., Maruoka T. 2003, Gypsum deposits in the Frasassi Caves, central Italy. Journal of Cave and Karst Studies. vol. 65, no. 2, pp. 111–125.
Plan L., Tschegg C., De Waele J., Spötl C. 2012, Corrosion morphology and cave wall alteration in an Alpine sulfuric acid cave (Kraushöhle, Austria). Geomorphology, vol. 169, pp. 45–54.
Onac B. P., Wynn J. G., Sumrall J. B. 2011, Tracing the sources of cave sulfates: a unique case from Cerna Valley, Romania. Chemical Geology, vol. 288, no. 3, pp. 105–114.
Yonge C. J., Krouse H. R. 1987, The origin of sulphates in Castleguard cave, Columbia icefields, Canada. Chemical Geology: Isotope Geoscience section, vol. 65, no. 3, pp. 427–433.
Tisato N., Sauro F., Bernasconi S. M., Bruijn R. H., De Waele J. 2012, Hypogenic contribution to speleogenesis in a predominant epigenic karst system: a case study from the Venetian Alps, Italy. Geomorphology, vol. 151, pp. 156–163.
Hill C. A., Forti P. 1997, Cave minerals of the world (2nd ed.). National Speleological Society, Huntsville Alabama, 463 p.
Holser W. T., Kaplan I. R. 1966, Isotope geochemistry of sedimentary sulfates. Chemical Geology, vol. 1, pp. 93-135.
Eckardt F. 2001, The origin of sulphates: an example of sulphur isotopic applications. Progress in physical geography, vol. 25, no. 4, pp. 512–519.
Seal R. R. 2006, Sulfur isotope geochemistry of sulfide minerals. Reviews in mineralogy and geochemistry, vol. 61, no. 1, pp. 633–677.
Dublyanskiy V. N. 2005, Kungurskaya ledyanaya peshchera: opyt rezhimnykh nablyudeniy. Kollektivnaya monografiya [Kungur Ice Cave: the experience of monitoring observations. The collective monograph], Ekaterinburg, 375 p.
Scholle P. A. 1995, Carbon and sulfur isotope stratigraphy of the Permian and adjacent intervals. The Permian of Northern Pangea. Springer Berlin Heidelberg, pp. 133–149.
1972, Gidrogeologiya SSSR [Hydrogeology of the USSR], Moscow, vol. 15, 39 p.
Bottrell S. H. 1991, Sulphur isotope evidence for the origin of cave evaporites in Ogof y Daren Cilau, south Wales. Mineralogical Magazine, vol. 55, no. 2, pp. 209–210.
Sancho C., Peña J. L., Mikkan R., Osácar C., Quinif Y. 2004, Morphological and speleothemic development in Brujas Cave (Southern Andean range, Argentine): palaeoenvironmental significance. Geomorphology, vol. 57, no. 3, pp. 367–384.
Onac B. P., Hess J. W., White W. B. 2007, The relationship between the mineral composition of speleothemes and mineralization of breccia pipes: evidence from Corkscrew Cave, Arizona, USA. The Canadian Mineralogist, vol. 45, no. 5, pp. 1177–1188.
Temovski M., Audra P., Mihevc A., Spangenberg J. E., Polyak V., McIntosh W., Bigot J. Y. 2013, Hypogenic origin of Provalata Cave, Republic of Macedonia: a distinct case of successive thermal carbonic and sulfuric acid speleogenesis. International Journal of Speleology, vol. 42, no. 3, pp. 235–246.
Dinur D., Spiro B., Aizenshtat Z. 1981, The distribution and isotopic composition of sulfur in organic-rich sedimentary rocks. Chemical Geology, vol. 31, pp. 37–51.
Chervyatsova O. Ya., Potapov S. S. 2014, Gipsovye otlozheniya Kinderlinskoy peshchery (Yuzhnyy Ural) kak vozmozhnyy priznak sernokislotnogo speleogeneza [Gypsum deposits of Kinderlinsk cave (Southern Urals) as a possible sign of a sulfuric acid speleogenesis]. Speleologiya i karstologiya [Speleology and karstology], no. 13, pp. 17–30.

Лицензия Creative Commons
All articles posted on the site are available under the Creative Commons Attribution 4.0 Global License.