ISSN 2307-2091 (Print) 

ISSN 2500-2414 (Online)

§     HOME      № 4 (52) 2018


Kirill Svyatoslavich IVANOV


УДК 553.982.2



K. S. Ivanov / News of the Ural State Mining University. 2018. Issue 4(52), pp. 41-49

Relevance of research. The study of the origin of oil is fundamental in geology, with essential scientific and practical importance. In connection with the gradual exhaustion of deposits of small and medium depths (up to 4.5 km), the question inevitably arises of the development of deeper hydrocarbon
The purpose of the work: to estimate the depth to which it is currently possible to detect oil fields.
Methodology of the research: analysis of theoretical models of inorganic formation of oil and the deep structure of the earth’s crust with the involvement of new data from experiments and global discoveries of deposits at super depths.
Results. Based on the rheological model by S. N. Ivanov (about the structure of the continental crust), the deepest oil fields should be located immediately below the separator, that is, directly under the fluid-tight boundary, usually at a depth of 10–11 km. According to the model of oil formation by A. I. Malyshev (model of cooling horizons), the maximum depth for oil fields is 12 km. Oil deposits with a depth of 10.7 km are already known. Tests by V. S. Balitsky and others on the phase states of water-hydrocarbon fluids at high temperatures and pressures show that there may be oil deposits of at least 12 km. Now, the same depth is maximally achievable when drilling.
Conclusion. Finding oil fields is possible to a depth of 12 km. However, the concept of the inorganic oil origin does not assume the necessity and expediency of searching for its deposits in the basement of Western Siberia and Yamal, over vast areas outside the known oil-bearing regions. If there
were significant oil-bearing deep breaks there, then oil, due to its lightness, would appear in the mantle. Therefore, the primary object of exploration is deep horizons under large oil fields.

Keywords: oil fields, deep structure of the earth’s crust, fluids.




1. Balitsky V. S., Balitskaya L. V., Penteley S.V., Pironon J., Barres O. 2015, Eksperimental’noye izucheniye metamorficheskikh prevrashcheniy uglevodorodov v vodnom okruzhenii pri povyshennykh i vysokikh temperaturakh i davleniyakh (v svyazi s vyyasneniyem form i maksimal’nykh glubin nakhozhdeniya nefti v zemnykh nedrakh) [Experimental study of metamorphic transformations of hydrocarbons in the water environment at elevated and high temperatures and pressures (in connection with the clarification of the forms and maximum depths of oil in the earth interior)]. 4th Kudryavtsev Readings: Proceedings of the All-Russian conference on the deep-seated oil genesis. Moscow, pp. 1–5.
2. Vanyan L. L., Hyndman R. D. 1996, On the Origin of Electrical Conductivity in the Consolidated Crust. Fizika Zemli [Izvestiya. Physics of the Solid Earth], no. 4, pp. 5–11. (In Russ.)
3. Varlamov A. I., Lodzhevskaya M. I. 2012, Uglevodorodnyy potentsial glubokozalegayushchikh otlozheniy osadochnogo chekhla neftegazonosnykh basseynov mira [Hydrocarbon potential of deep-seated sediments of the sedimentary mantle of the oil and gas basins] // Current state of the
theory of origin, forecasting methods and deep oil exploration technologies (1st Kudryavtsev readings): Proceedings of the All-Russian conference. Moscow, pp. 1–3. http://conference.deepoil.ru/images/stories/docs/tema/017_Varlamov-Lodgevskaya_Theses1.pdf
4. Ivanov K. S., Erokhin Yu. V. 2016, Neorganicheskaya geokhimiya nefti Severnoy Evrazii (po dannym ICP-MS) [Inorganic geochemistry of oil of the Northen Eurasia (according to ICP- MS)]. All-Russian Conference on the deep genesis of oil. 5th Kudryavtsev Readings: Proceedings of the conference (October 17–19, 2016). Moscow, pp. 1–4.
5. Ivanov K. S. 2016, How much oil should Russia produce? (open letter to the President of Russia V. V. Putin). Ural’skiy geologicheskiy zhurnal [Uralian Geological Journal], no. 6, pp. 3–10. (In Russ.)
6. Ivanov K. S., Kucherov V. G., Fedorov Yu. N. 2008, To the question of the deep origin of oil. State, trends and problems of the development of the oil and gas potential of Western Siberia (September 17–19). Tyumen, pp. 160–173.
7. Ivanov K. S., Fedorov Yu. N., Petrov L. A., Shishmakov A. B. 2010, The nature of biomarkers in oils. Doklady Akademii nauk [Doklady Earth Sciences], vol. 432, no. 1, pp. 626–630.
8. Ivanov S. N. 1970, Predel’naya glubina otkrytykh treshchin i gidrodinamicheskaya zonal’nost’ zemnoy kory [Extreme depth of open cracks and hydrodynamic zonality of the earth’s crust]. Sverdlovsk, Yearbook-1969, pp. 212–233.
9. Ivanov S. N. 1999, Impermeable zone at the border of the upper and middle parts of the crust. Fizika Zemli [Izvestiya. Physics of the Solid Earth], no. 9, pp. 96–102. (In Russ.)
10. Ivanov S. N., Ivanov K. S. 2018, Rheological model of the structure of the earth’s crust (model of the 3rd generation). Litosfera [Lithosphere], no. 4, pp. 3–18. (In Russ.)
11. 2003, Istoriya geologicheskogo poiska (k 50-letiyu otkrytiya Zapadno-Sibirskoy neftegazonosnoy provintsii) [History of geological prospecting (to the 50th anniversary of the discovery of the West Siberian oil and gas province). Ed. by V. I. Karasev et al. Moscow, 283 p.
12. Krayushkin V. A. 2014, Nonbiogenic origin of giant gas and oil deposits in the continental slope of the World’s water. Glubinnaya neft’ [Deep oil], vol. 2, no. 5, pp. 739–751. (In Russ.)
13. Kudryavtsev N. A. 1973, Genezis nefti i gaza [Genesis of oil and gas]. Leningrad, 216 p.
14. Kucherov V. G., Bendeliani N. A., Alekseev V. A. J. Kenney. F. 2002, Synthesis of hydrocarbons from minerals at pressures up to 5 GPa. Doklady Akademii nauk [Doklady Earth Sciences], vol. 387, no. 6, pp. 789–792. (In Russ.) URL: https://elibrary.ru/item.asp?id=29053767
15. Malyshev A. I. 2017, The role of cooling horizons in the genesis of hydrocarbon deposits. Doklady Akademii nauk [Doklady Earth Sciences], vol. 476, no. 4, pp. 445–447. (In Russ.) URL: https://elibrary.ru/item.asp?id=30150860
16. Marakushev A. A., Pisotskii B. I., Paneyakh N. A., Gottikh R. P. 2004, Geochemical features of oil and the origin of oil fields. Doklady Akademii nauk [Doklady Earth Sciences], vol. 398, no. 6, pp. 795–799. (In Russ.) URL: https://elibrary.ru/item.asp?id=13463569
17. Mendeleev D. I. 1949, Sochineniya [Writings]. Tom 10. Neft' [Vol. 10. Oil]. Moscow; Leningrad, 832 p.
18. Pavlenkova N. I. 2016, Petrofizicheskiye problemy global’noy tektoniki [Petrophysical problems of global tectonics]. Tectonophysics and topical issues of Earth sciences: The 4th tectonophysical conference at the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences (IPE RAS) with international participation, pp. 529–537.
19. Porfiryev V. B.1987, Priroda nefti, gaza i iskopayemykh ugley [The origin of oil, gas and fossil coal]. Selectas. Vol. 2. Abiogennaya neft’ [Abiogenic oil]. Kiev, 216 p.
20. Sokol A. G., Tomilenko A. A., Bulbak, T. A., Sobolev N. V. 2017, Synthesis of hydrocarbons in the conversion of CO2 fluid by hydrogen: experimental simulation at 7.8 hPa and 1350° C. Doklady Akademii nauk [Doklady Earth Sciences], vol. 477, no. 6. pp. 699–703. (In Russ.) URL: https://elibrary.ru/item.asp?id=30752880
21. Timurziev A. I. 2014, Regularities of extensive and stratigraphical distribution of oil and gas deposits of the West-Siberian oil-bearing field on the basis of ideas about their deep genesis, young age and the latest formation time. Gornyye vedomosti [Mining news], no. 5 (120), pp. 24–46. (In Russ.) URL: https://elibrary.ru/item.asp?id=21577221
22. Fedorov Yu. N., Ivanov K. S., Erokhin Yu. V., Ronkin Yu. L. 2007, Inorganic geochemistry of oil in Western Siberia (the first results of the study by ICP-MS method). Doklady Akademii nauk [Doklady Earth Sciences], vol. 414, no. 3. pp. 385–388. (In Russ.) URL: https://elibrary.ru/item.asp?id=9533485
23. Chekaliuk E. B., Kenney J. F. 1991, The stability of hydrocarbons in the thermodynamic conditions of the Earth. Proceedings of the American Physical Society, vol. 36(3). 347 p.
24. Cruse A. M., Seewald J. S. 2006, Geochemistry of low-molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, Northern Juan de Fuca Ridge. Geochimica et Cosmochimica Acta, vol. 70, issue 8, pp. 2073–2092. https://doi.org/10.1016/j.gca.2006.01.015
25. 2002, Gulf of Mexico Waits For A Turnaround, World Oil. March. URL: https://www.worldoil.com/magazine/2002/march-2002/features/gulf-ofmexico-waits-for-a-turnaround
26. Howard G. H., Barry P. H., Pernet-Fisher J. F., Baziotis I. P., Pokhilenko N. P., Pokhilenko L. N., Bodnar R. J., Taylor L. A., Agishev A. M. 2014, Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos, vol. 184–187, pp. 209–224. https://doi.org/10.1016/j.lithos.2013.09.006
27. Ivanov S. N., Ivanov K. S. 1993, Hydrodynamic Zoning of the Earth’s crust and its Significance. Journal of Geodynamics. Vol. 17, issue 4. P. 155–180. https://doi.org/10.1016/0264-3707(93)90006-R
28. Kaminsky F. V., Wirth R., Schreiber A. 2014, Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association. The Canadian Mineralogist, vol. 51, issue 5, pp. 669–688. https://doi.org/10.3749/canmin.51.5.669
29. Kitchka A. 2004, Juvenile petroleum pathway: from fluid inclusions via tectonics and outgassing to its commercial fields. Ukrainian Geologist, no. 2 (6), pp. 37–47.
30. Kolesnikov A., Kutcherov V., Goncharov A. 2009, Methane-derived hydrocarbons produced under upper-mantle conditions. Nature Geoscience, vol. 2, pp. 566–570. https://doi.org/10.1038/ngeo591
31. Mukhina E. D., Kolesnikov A. Yu., Serovaisky A. Yu., Kucherov V. G. 2017, Experimental Modelling Of Hydrocarbon Migration Processes. Journal of Physics: Conference Series, vol. 950. 042040. URL: http://iopscience.iop.org/article/10.1088/1742-6596/950/4/042040/pdf
32. 2009, Operators report string of Gulf of Mexico discoveries. Oil & Gas Journal, vol. 107, issue 7, p. 35.
33. Proskurowski G., Lilley M. D., Seewald J. S., Fruh-Green G. L., Olson E. J., Lupton J. E., Sylva S. P., Kelley D. S. 2008, Abiogenic hydrocarbon at Lost City hydrothermal field. Science, vol. 319, issue 5863, pp. 604–607. https://doi.org/10.1126/science.1151194
34. Shirey S. B., Cartigny P., Frost D. J., Keshav S., Nestola F., Nimis P., Pearson D. G., Sobolev N. V., Walter M. J. 2013, Diamonds and the geology of mantle carbon. Reviews in Mineralogy and Geochemistry, vol. 75, issue 1, pp. 355–421. https://doi.org/10.2138/rmg.2013.75.12
35. Sverjensky D. A., Stagno V., Fang Huang. 2014, Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nature Geoscience, vol. 7, pp. 909–913. https://doi.org/10.1038/ngeo2291
36. Weiss Y., Kiflawi I., Davies N., Navon O. 2014, High-density fluids and the growth of monocrystalline diamonds. Geochimica et Cosmochimica Acta, vol. 141. 15 September, pp. 145–159. https://doi.org/10.1016/j.gca.2014.05.050


Лицензия Creative Commons
All articles posted on the site are available under the Creative Commons Attribution 4.0 Global License.