2-18-8

Regularities of the chemical composition of technogenic transformation which groundwater undergoes in the areas of the potash deposits development

P. A. Belkin, V. N. Kataev

 

DOI http://dx.doi.org/10.21440/2307-2091-2018-2-55-64

P. A. Belkin, V. N. Kataev / News of the Ural State Mining University 2 (2018) 55-64


The urgency of the work. Potash salts are an important and needed resource. Its development is steadily increasing in view of the sufficient level of security and the growing need for the world economy. Production and processing of potassic salts lead to changes in the chemical composition of various components of the natural environment in the areas of deposits. In particular, these changes are typical for the aquatic component of ecosystems, which include groundwater zones of active water exchange.
The purpose of the work is to determine a set of chemical tracer elements of the potash industry impact on the composition of the underground waters in the active water exchange zone. The characteristic of the sources of these elements in the aquatic environment is also the purpose of the present study.
Research methodology. This paper summarizes data on the largest potash deposits in the world. The peculiarities of their genesis, methods of mining of ore deposits and their enrichment are described here. The work gives characteristics of the chemical composition of ores potash deposits, and waste potash production. It also gives the results of hydrochemical studies of groundwater in different regions of the extraction of potassium. 
Results. The analysis showed that the largest potash deposits in the world were characterized by a predominance of chloride salts. The main mineral component of the developed potash deposits in most cases is sylvin, carnallite and a group of sulphate minerals play a subordinate role. The predominant number of industrially developed potash ores is deposits of solid minerals of salts, which are produced by the mine method. Enrichment technologies are, in fact, represented by the two main methods: flotation method and chemical method.
Summary. As a result of research, the complex of the chemical elements defining the direction of transformation of chemical composition of underground waters was allocated. This complex is divided into leading (Cl, Na, K) and secondary (S, Ca, Mg) macro components of salts subject to their role in the formation of potash ore composition, the ability to water migration and the danger to humans. The micro components of salts (halogen, alkaline and alkaline earth metals), as well as accessory micro components of salts (heavy metals, semi-metals and non-metals) are among these components.

Keywords: groundwater; chemical composition; deposits of potassium salts; technogenesis; industrial waste; geochemical indicators.

 
REFERENCES

1. Ivanov A. A., Voronova M. L. 1972, Galogennyye formatsii [Halogen formations], Moscow, 328 p.
2. Rauche H. 2015, Die Kaliindustrie im 21. Jahrhundert. Berlin, Heidelberg, 580 p.
3. 2007, Metodicheskiye rekomendatsii po primeneniyu Klassifikatsii zapasov mestorozhdeniy i prognoznykh resursov tverdykh poleznykh iskopayemykh. Soli [Methodical recommendations on applying the Classification of reserves of fields and forecast resources of firm minerals. Salts]. Moscow, 47p.
4. Bayandina E. A., Kudryashov A. I. 2015, Nerastvorimyy ostatok Verkhnekamskogo mestorozhdeniya [The insoluble residue of the Verkhnekamskoye Deposit]. Perm', 102 p.
5. Teterina N. N., Sabirov R. H., Skvirsky L. Ya. and others. 2002, Tekhnologiya flotatsionnogo obogashcheniya kaliynykh rud. Pod red. N. N. Teterinoy [The Technology of flotation beneficiation of potash ore. Ed. by N. Teterina]. Perm', 484 p.
6. Strakhov N. M. 1962, Osnovy teorii litogeneza [Fundamentals of the theory of lithogenesis]. Vol. 3. Moscow, 552 p.
7. Korenevsky S. M. 1973, Komplex poleznykh iskopayemykh galogennykh formatsiy [A complex of minerals of the halogen formations]. Moscow, 300 p.
8. Garrett D. E. 1996, Potash: deposits, processing, properties and uses. London, 374 p.
9. Bachurin B. A. 2006, Ekologicheskiye problemy gornopromyshlennykh rayonov Permskogo kraya [Ecological problems of mining regions in the Perm Krai]. Ekologiya i promyshlennost’ Rossii [Ecology and industry of Russia], no. 4, pp. 32–35.
10. Kudryashov A. I. 2013, Verkhnekamskoye mestorozhdeniye soley. 2-e izd. [Verkhnekamskoye deposit of salts. 2nd ed.]. Moscow, 368 p.
11. Permyakov R. S., Kovalev O. V., Pinsky V. L. and others. 1986, Spravochnik po razrabotke solyanykh mestorozhdeniy [A Guide to the development of salt deposits]. Moscow, 212 p.
12. Bel’tyukov G. V. 2000, Karstovyye i gipergennyye protsessy v evaporitakh: dis. ... d-ra geol.-mineral. nauk [Karst and hypergenic processes in evaporites: Dissertation of the Doctor of geological and mineralogical sciences]. Perm', 337 p.
13. Bachurin B. A., Murzayev V. M., Odintsova T. A. 1998, Ekologo-geokhimicheskaya kharakteristika otkhodov kaliynogo proizvodstva [Ecological and geochemical characterization of waste of potash production]. Gornyye nauki na rubezhe XXI veka: materialy Mezhdunar. konf. [Mining science at the turn of the 21st century: proceedings of the International Conference]. Ekaterinburg, pp. 408–417.
14. Tyutyunova F. I. 1987, Gidrogeokhimiya tekhnogeneza [Hydrogeochemistry of technogenesis]. Moscow, 335 p.
15. Gol’dberg V. M., Gazda S. 1984, Gidrogeologicheskiye osnovy okhrany podzemnykh vod ot zagryazneniya [Hydrogeological basis for protecting groundwater against pollution]. Moscow, 262 p.
16. Mironenko V. A., Molsky E. V., Rumynin V. G. 1988, Izucheniye zagryazneniya podzemnykh vod v gornodobyvayushchikh rayonakh [A study of groundwater pollution in mining areas]. Leningrad, 279 p.
17. Gorbunova K. A., Maximovich N. G., Andreychuk V. N. 1990, Tekhnogennoye vozdeystviye na geologicheskuyu sredu Permskoy oblasti: preprint [Technogenic impact on the geological environment of Perm region: Preprint]. Sverdlovsk, 44 p.
18. Belkin P. A. 2016, Rezul'taty izucheniya vliyaniya ionoobmennykh protsessov na sostav podzemnykh vod Verkhnekamskogo mestorozhdeniya soley [The results of studying the influence of ion exchange processes on the composition of the groundwater of salts in the Verkhnekamskoye deposit]. Problemy geologii i osvoyeniya nedr: trudy XX mezhdunar. simpoz. im. akad. M. A. Usova studentov i molodykh uchenykh [Problems
of Geology and exploitation of mineral resources: proceedings of the 20th International Symposium named after Academician M. A. Usov, for students and young scientists], vol. 1.Tomsk, pp. 626–628.
19. Belkin P. A., Menshikova E. A., Kataev V. N. 2016, Influence of ion exchange processes on the composition of the groundwater from the Upper Kama potash salt deposit. SGEM2016 Conference Proceedings, book 3, vol. 3, pp. 173–180. DOI: 10.5593/SGEM2016/HB33/S02.022.
20. Khayrulina E. A., Maximovich N. G. 2012, Vliyaniye stokov soleotvala kaliynogo predpriyatiya na khimizm pripoverkhnostnoy gidrosfery[Influence of effluents of the potassic salt enterprises on the chemistry of the near-surface hydrosphere]. Geokhimiya landshaftov i geografiya pochv: doklady Vserossiyskoy nauchnoy konferentsii [Geochemistry of landscapes and geography of soils: Proceedings of the all-Russia scientific conference]. Moscow, pp. 340–342.
21. Khayrulina E. A. 2014, Tekhnogennaya transformatsiya landshaftno-geokhimicheskikh protsessov v rayone dobychi kaliyno-magniyevykh soley [Technogenic transformation of landscape-geochemical processes in the area of potassium-magnesium salts extraction]. Teoreticheskaya i prikladnaya ekologiya [Theoretical and applied ecology], no. 3, pp. 41–45.
22. Khayrulina E. A., Maximovich N. G. 2017, Vliyaniye shlamokhranilishcha s solesoderzhashchimi otkhodami na pripoverkhnostnuyu gidrosferu [Influence of sludge storage with salt-containing wastes on surface hydrosphere]. Geoekologicheskaya bezopasnost’ razrabotki mestorozhdeniy poleznykh iskopayemykh. Sergeyevskiye chteniya [Geo-ecological safety of mineral deposits development. Sergeyev readings], vol. 19. Moscow, pp. 429–434.
23. Shchukova I. V., Ushakova E. S. 2012, Podzemnyye vody Solikamskoy gradopromyshlennoy aglomeratsii [Groundwater of Solikamsk urban industrial agglomeration]. Internet-vestnik VolgGASU [Scientific and technical multi-topic Internet journal of Volgograd State University of Architecture and Civil Engineering], no. 2 (22).
24. Shchukova I. V. 2014, Sovremennoye sostoyaniye podzemnykh vod rayona razvitiya solyanogo karsta na territorii Permskogo kraya [Current state of groundwater in the area of development of the salt karst in the Perm Krai]. Sovremennyye naukoyemkiye tekhnologii [Modern high technologies], no. 12-1, pp. 37–42.
25. Otero N., Soler A. 2002, Sulphur isotopes as tracers of the influence of potash mining in groundwater salinisation in the Llobregat Basin (NE Spain). Water Research, vol. 36, issue 16, pp. 3989–4000.
26. Bauer M., Eichinger L., Elsass P. et al. Isotopic and hydrochemical studies of groundwater flow and salinity in the Southern Upper Rhine Graben. International Journal of Earth Sciences. Geologische Rundschau, 94, pp. 565–579.
27. Durand S., Chabaux F., Rihs S., Duringer P., Elsass P. 2005, U isotope ratios as tracers of groundwater inputs into surface waters: Example of the Upper Rhine hydrosystem. Chemical Geology, 220 (1–2), pp. 1–19.
28. Lucas Y., Schmitt A. D., Chabaux F., Clément A., Fritz B., Elsass P., Durand S. 2010, Geochemical tracing and hydrogeochemical modelling of water-rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France). Applied Geochemistry, 25 (11), pp. 1644–1663.
29. Siefert B., Büchel G., Lebküchner-Neugebauer J. 2006, Potash mining waste pile Sollstedt (Thuringia): Investigations of the spreading of waste solutes in the Roethian Karst. Grundwasser, 11 (2), pp. 99–110.
30. Bachurin B. A. 2007, Geokhimicheskaya transformatsiya otkhodov gornogo proizvodstva [Geochemical transformation of mining waste] Mineralogiya tekhnogeneza–2017: materialy nauchnogo seminara [Mineralogy of technogenesis: materials of scientific workshop]. Miass, pp. 177–188.
31. Perelman A. I. 1982, Geokhimiya prirodnykh vod [Geochemistry of natural waters]. Moscow, 154 p.
32. Bąbel M., Schreiber B. C. 2014, Geochemistry of Evaporites and Evolution of Seawater. Treatise on Geochemistry. 2nd ed. Ed. by Heinrich D. Holland and Karl K. Turekian. Oxford, pp. 483–560.

Лицензия Creative Commons
All articles posted on the site are available under the Creative Commons Attribution 4.0 Global License.