Issue 2(42), 2016

ISSN 2307-2091 (Print) 

ISSN 2500-2414 (Online)

DOI: dx.doi.org/10.21440/2307-2091-2016-2-47-53

Survey on underground geotechnology during transition to the development of deep reserves of inclined copper pyrite deposits pdf

I. V. Sokolov, Yu. G. Antipin, I. V. Nikitin, K. V. Baranovskiy, A. A. Rozhkov

At the present stage of development of the mining industry, there is a trend to increase the depth of the development of mineral resources in the context of limited financial and time resources. The need to maintain Urup underground mine production capacity determines the transition to the working out of deep reserves of copper pyrite ore, efficiency of development of which largely depends on the proper selection of schemes of opening and development technology. Comparison of volumes and timing of construction for two constructed variants of opening showed that the gradual opening of the ore by sloping with road transport provides a timely transition to the working out of deep mine reserves without any loss of production capacity. One can characterize technologies of ore extraction with the usage of portable equipment by a large amount of preparatory-threaded work, high losses and dilution of ore, and low labor productivity. With increasing depth of the elaboration, capacity of the ore body is reduced; therefore, the efficiency of existing production technology will decline sharply. As a result of technical and economic comparison of ten constructed variants of ore mining technology by the criterion of maximum profit, referred to the 1 ton of redeemable balance reserves, authors established the effectiveness of the development of the system of sublevel caving of the ore bodies for average power and room-and-pillar system for low-power stations. The use of these options of technology can significantly improve the technical and economic indicators of ore extraction and obtain acceptable average weighted ore recoveries (loss of 17 %, 22 % dilution) using self-propelled equipment and disposal of rocks from tunneling and cleaning recess in the goaf of waste chambers.

Keywords: copper pyrite ore; opening circuit; development system; a self-propelled equipment; construction; technical and economic indicators; profit.

 

REFERENCES

1. Yakovlev V. L. 2015, O razvitii metodologicheskikh podkhodov k issledovaniyu problem osvoeniya nedr [On the development of methodological approaches to the study of problems of development of mineral resources]. Problemy nedropol’zovaniya [Problems of subsoil use], no. 2, pp. 5–9.
2. Nikitin I. V. 2015, Vybor sposoba vskrytiya i skhemy transporta rudy pri otrabotke glubokikh gorizontov Urupskogo podzemnogo rudnika [Selecting of the method of opening and circuit of ore transport when mining deep underground horizons of Urup mine]. Problemy nedropol’zovaniya [Problems of subsoil use], no. 3, pp. 50–58.
3. Luzin P. N., Smirnov A. A. 2001, Otrabotka naklonnoy magnezitovoy zalezhi kamerno-stolbovoy sistemoy s sukhoy zakladkoy [Testing of sloping magnesite deposit using chamber-and-pillar system with dry laying]. Gornyy informatsionno-analiticheskiy byulleten’ [Mining informational and analytical bulletin], no. 1, pp. 224–225.
4. Sokolov I. V., Antipin Yu. G., Baranovskiy K. V. 2013, Izyskanie podzemnoy geotekhnologii dlya otrabotki rudnogo tela sredney moshchnosti i naklonnogo padeniya Kyshtymskogo mestorozhdeniya granulirovannogo kvartsa [Research of underground geotechnology for developing of the ore body with average power and the oblique incidence of Kyshtymsk granular quartz deposit]. Izvestiya vuzov. Gornyy zhurnal [News of the Higher Institutions. Mining Journal], no. 2, pp. 17–22.
5. Versilov C. O., Razorenov Yu. I., Frolov A. V., Seleznev V. P. 2006, Opredelenie bezopasnykh razmerov rudnykh tselikov pri vyemke naklonnykh zalezhey kamerno-stolbovymi sistemami razrabotki [Determining the safe size of ore pillars during the excavation of oblique deposits with chamber-pillar mining systems]. Gornyy informatsionno-analiticheskiy byulleten’ [Mining informational and analytical bulletin], no. 4OV, pp. 215–220.
6. Boguslavskiy E. I., Korzhavykh P. V. 2012, Usloviya primeneniya etazhno-kamernykh sistem pri otrabotke glubokikh rudnykh mestorozhdeniy [Terms of usage of storey-camera systems during the processing of deep ore deposits]. Gornyy informatsionno-analiticheskiy byulleten’ [Mining informational and analytical bulletin], no. 1, pp. 5–8.
7. Fiscor S. 2012, Ravett Minerals: An Evolving American Success Story. Engineering and Mining Journal, no. 6, pp. 64–73.
8. Lovejoy C. 2011, Taking Troy to the next level. News of the Higher Institutions. Mining Journal, December, pp. 13–14.
9. Sokolov I. V., Smirnov A. A., Antipin Yu. G., Baranovskiy K. V., Rozhkov A. A. 2015, Resursosberegayushchaya tekhnologiya podzemnoy razrabotki mestorozhdeniya vysokotsennogo kvartsa [Resource saving technology of underground mining of deposits of high-value quartz]. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh [Physical and technical problems of mining], no. 6, pp. 133–145.

Лицензия Creative Commons
All articles posted on the site are available under the Creative Commons Attribution 4.0 Global License.