Simple stationary filtering flows of incompressible non-newtonian oil in a homogeneous formation according to a general nonlinear law

 

M. G. kyzy Alieva, N. G. ogly Valiev / News of the Ural State Mining University. 2021. Issue 1(61), pp. 39-45

https://doi.org/10.21440/2307-2091-2021-1-39-45

 

Relevance. Three stationary hydrodynamic theoretical problems are solved, in which filtrations obey only the General nonlinear law. Simple flows occur in tasks: plane-parallel, plane-radial, and hemispherical-radial. All derived formulas – oil flow rate, filtration rate, pressure gradient, etc. – should be used to solve various practical problems of the development of these deposits and even when drawing up a project for the development of such deposits.
The methodology of the research. It should be noted that a plane-parallel simple filtration flow of oil originates from a strip-like reservoir to a straight gallery. In addition, such a simple filtration fluid flow also occurs when the oil field under development has several parallel rectilinear rows of production production wells and, in some cases, there may be rows of injection water wells in the reservoir.
Research results. In oil-bearing areas between parallel adjacent rows, oil filtration is also plane-parallel. Hence, the practical significance of solving the first problem of a plane-parallel oil flow in this scientific article becomes clear. Planar-radial simple filtration flow of oil originates from a circular horizontal formation to a central production well. In addition, such a simple filtration fluid flow also occurs when a strip-like oil field being developed has several (usually three or four) parallel straight rows of production production wells. In the drainage zones of these wells, a simple flat-radial filtration flow also occurs.
Conclusions. From the foregoing, the practical significance of a radial plane oil flow becomes clear. Hemispherical – a radial simple filtration flow of oil originates from a hemispherical reservoir to a central well, barely penetrated by the reservoir by its hemispherical concave bottom. By analyzing these calculation formulas, you can identify the specific features of the development of deposits, develop and implement measures to eliminate undesirable phenomena.



Keywords
: filtration flows, non-newtonian oil, nonlinear law, incompressible oil, homogeneous reservoir, flow rate,
filtration rate, duration of advance, differential equation.

 

REFERENCES

1. Novruzova S. H., Mustafayev S. D. 2019, Sıxılmayan qeyri-nyuton neftin bircins məsaməli mühitdə düzxətli kəhrizə yastı-paralel sadə süzülmə
axını, no. 2, səh. 36–38.
2. Mustafayev S. D., İsmayılov Q. S., Sadıqova N. S. 2012, Qeyri-bircins məsaməli mühitdə qeyri-nyuton mayenin yastı-radial stasionar süzülmə
axını. Azərbaycan Elmi Beynəlxalq nəzəri jurnal, no. 8-9, səh. 91–96.
3. Mustafayev S. D., Asadov A. Sh., Mustafaev N. S., Sadigova N. S. 2010, Nesmeshivayushcheyesya vytesneniye odnoy neszhimayemoy
nen’yutonovskoy zhidkosti drugoy v odnorodnoy poristoy srede [Immiscible displacement of one incompressible non-Newtonian fluid by another
in a homogeneous porous medium]. Azərbaycan Elmi Beynəlxalq nəzəri jurnal, no. 7-8, səh. 42–45.
4. Mustafayev S. D., Şıxıyev M. N., Kazımov F. K., Hüseynova R. K., Mustafayev N. S. 2009, Sıxılmayan qeyri-nyuton mayelərin bircins məsaməli
mühitdə yastı-radial süzülmə axınlar. ANT, no. 11, səh. 35–37.
5. Pirverdyan A. M. 1956, Neftyanaya podzemnaya gidravlika [Oil underground hydraulics]. Baku, 332 p.
6. Kristea N. 1961, Podzemnaya gidravlika [Underground hydraulics]. Мoscow, vol. I, 343 p.
7. Mustafayev S. D., Kyazimov F.K., Guseinova R.K. 2020, Hemispherical stationary movements of incompressible oils in a homogeneous reservoir
according to various filtration laws. Vektor GeoNauk [Vector of GeoSciences], vol. 3, no. 2, pp. 24–29. (In Russ.) https://doi.org/10.24411/2619-
0761-2020-10015
8. Mustafayev S. D., Gasymova S.A. 2018, Plane-parallel stationary filtration of incompressible viscous-plastic oil with the manifestation of a
parallel pressure gradient. Tekhnologii nefti i gaza [Oil and gas technologies], no. 2, pp. 24–27. (In Russ.)
9. Gadzhieva L. S. 2019, Sfericheski-radial’noye dvizheniye vyazko-plastichnoy neszhimayemoy nefti v odnorodnom plaste po li-neynomu zakonu
fil’tratsii v vodonapornom rezhime [Spherical-radial motion of viscous-plastic incompressible oil in a homogeneous reservoir according to the
linear law of filtration in a water-driven regime], no. 3, pp. 77–81.
10. Mustafayev S. D., Kazımov F. K., Xankişiyeva T. İ. 2018, Bircins zolaqvari yataqda sıxılmayan özlü-plastik neftin düzxətli kəhrizə su ilə
sıxışdırılması. Vektor GeoNauk [Vector of GeoSciences], vol. 1, no. 4, pp. 28–31.
11. Mustafayev S. D., Bayramov F. G. 2019, Fil’tratsiya neszhimayemoy vyazko-plastichnoy nefti so svobodnoy poverkhnost’yu v odnorodnom
plaste k pryamolineynoy galereye [Filtration of incompressible viscous-plastic oil with a free surface in a homogeneous reservoir to a straight line
mine gallery], no. 1, pp. 60–63.
12. Mustafayev S. D., Safarov E. G., Aslanov D. N. 2017, Method of reducing of surface phenomena negative influence of oil recoverу coefficient
at expansion stage of layers. Engineering Computations, vol. 31, no. 8(3), pp. 2808–2817.

Лицензия Creative Commons
All articles posted on the site are available under the Creative Commons Attribution 4.0 Global License.