ISSN 2307-2091 (Print) 

ISSN 2500-2414 (Online)

УДК 549+552.44(571.121) https://doi.org/10.21440/2307-2091-2019-2-20-27

Mineralogy of schists from the basement of the southwestern part of the Tazovsky peninsula of the West Siberian megabasin (Lenzitskaya oil exploration area, YNAD) Vladimir Sergeevich PONOMAREV* , Kirill Svaytoslavich IVANOV**, Vera Vital’evna KHILLER*** Zavaritsky Institute of Geology and Geochemistry of the Ural Branch of RAS, Ekaterinburg, Russia Relevance of the work.

V. S. Ponomarev et al. / News of the Ural State Mining University. 2019. Issue 2(54), pp. 20-27

The crystalline basement of Western Siberia is a promising site in the search for oil and gas, but not a sufficiently studied subject. Promising rocks are granitoids and partly their metamorphic margins. Core samples from wells, which uncovered rocks of the basement of Western Siberia, are unique because they are rare and extremely difficult to access, so it is necessary to conduct a comprehensive detailed core study for geodynamic reconstructions and to consider the geological evolution of the region.
Purpose of the work. The determination of the material composition of quartz-chlorite-mica schists from the pre-Jurassic basement of the northern (Arctic) part of the West Siberian megabasin uncovered by the Lenzitskaya well No 77 (depth is 3516–3502 m) 265 km east of Salekhard within the Yamalo-Nenets Autonomous District (YNAD).
Results. The studied quartz-chlorite-mica schists are fine-grained rocks of a greenish-gray color; they have an interdigitation of thin beds of rock enriched in mica-quartz-carbonate substance (up to 2 mm thick) with a small amount of chlorite, and layers of quartz-chlorite-mica composition (up to 3 mm) with the presence of carbonate boudin. Intimate crumpling is often observed in the rock. In the lower part of the section (depth is 3516 m), the rocks have a medium-grained structure and are composed of calcite (60%), quartz (25%), mica (10%) and chlorite (5%). The quartz-sericitic-chlorite-carbonate rock has a schistous form due to light layers of quartz-calcite composition with a thickness of up to 2 cm and thin layers of a chlorite-mica aggregate with a thickness of up to 2 mm. The following was established using X-ray electron probe microanalyzer CAMECA SX 100: muscovite, aluminoceladonite, quartz, chamosite, calcite, plagioclase, pumpellyite-(Fe2 +), rutile, fluorapatite, monazite, zircon, pyrite and chalcopyrite. Quartz-sericitic schists similar in composition were found by us in the basement rocks of the Priuralsky part of the West Siberian plate in the Shaimsk-Kuznetsovsk megaanticlinorium.
Conclusion. The mineralogy of quartz-chlorite-mica schists from the pre-Jurassic basement of the northern part of the West Siberian megabasin (Lenzitskaya 77 well, depth is 3502–3516 m) was first described. It was established that the formation of quartz-chlorite-mica schists took place under the conditions of the upper prehnite-pumpellyite facie of metamorphism along the sedimentary substance. Later the rocks underwent changes in the process of propitilization.

Keywords: quartz-chlorite-mica schists, mineralogy, metamorphism, basement, West Siberian megabasin, YNAD.



  1. Kontorovich A. E., Nesterov I. I., Salmanov F. K., Surkov, V. S., Trofimuk A. А. 1975, Geologiya nefti i gaza Zapadnoy Sibiri [Geology of oil and gas in Western Siberia]. Moscow, 690 p.
  2. Surkov, V. S., Trofimuk A. А. 1986, Megakompleksy i glubinnaya struktura zemnoy kory Zapadno-Sibirskoy plity [Megacomplexes and deep structure of the Earth’s crust of the West Siberian Plate]. Moscow, 149 p.
  3. Saunders D. A., England W. R., Reichow K. M., White V. R. 2005, A mantle plume origin for the Siberian traps: uplift and extensional in the West Siberian basin, Russia. Lithos, vol. 79, pp. 407–424. https://doi.org/10.1016/j.lithos.2004.09.010
  4. Reichow M. K., Saunders A. D., White R. V., Al’Mukhamedov A. I., Medvedev A. Y. 2005, Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo-Triassic Siberian Traps, Russia. Lithos, vol. 79, no. 3/4, pp. 425–452. http://dx.doi.org/10.1016/j.lithos.2004.09.011
  5. Vyssotski A. V., Vyssotski V. N., Nezhdanov A. A. 2006, Evolution of the West Siberian Basin. Marine and Petroleum Geology, vol. 23, pp. 93–126. https://doi.org/10.1016/j.marpetgeo.2005.03.00
  6. Areshev E. G., Gavrilov V. P., Dong H L., Zao, N., Popov O. K., Pospelov V. V., Shan N. T., Shnip O. A. 1997, Geologiya i neftegazonosnost’ fundamenta Zondskogo shel’fa [Geology and petroleum potential of the Sunda shield]. Moscow, 288 p.
  7. Ivanov K. S., Erokhin Y. V., Ponomarev V. S., Fedorov Y. N., Kormiltsev V. V., Klets A. G., Sazhnova I. А. 2007, Granitoidnyye kompleksy fundamenta Zapadnoy Sibiri [Granitoid basement complexes of Western Siberia]. The state, trends and problems of the development of the oil and gas potential of Western Siberia: proceedings of the international conference, Tyumen, pp. 49–56.
  8. Fedorov Y. N., Ivanov K. S., Sadykov M. R., Pecherkin M. F., Krinochkin V. G., Zakharov S. G., Krasnobaev A. A., Erokhin Y. V. 2004, Stroyeniye i perspektivy neftegazonosnosti doyurskogo kompleksa territorii KHMAO: novyye podkhody i metody [Structure and oil and gas potential of the pre-Jurassic complex of the territory of the KHMAD: new approaches and methods], research-to-practice conference. Khanty-Mansiysk, vol.1, pp. 79–90.
  9. Braduchan Y. V., Vasilenko E. P., Voronin A. S., Gorelina T. E., Kovrigina E. K., Lebedeva E. A., Markina T. V., Matyushkov A. D., Rubin L. I., Faybusovich Ya. E., Chuiko M. A. 2015, State geological map of the Russian Federation. Scale 1:1000000 (third generation). Ser. West Siberian. Sheet Q-43 – New Urengoy. Explanatory note. Saint-Petersburg, 320 p.
  10. Likhanov I. I., Reverdatto V. V., Kozlov P. S., Vershinin A. E. 2011, The Teya polymetamorphic complex in the Transangarian Yenisei ridge: an example of metamorphic superimposed zoning of low- and medium-pressure facies series. Doklady Earth Sciences, vol. 436, issue 2, pp. 213–218. https://doi.org/10.1134/S1028334X11020048
  11. Rieder M., Cavazzini G., D’yakonov Y., Frank-Kamenetskii V. A., Gottardi G., Guggenheim S., Koval P.V., Muller G., Neiva A. M. R., Radoslovich E. W., Robert J.-L., Sassi F. P., Takeda H., Weiss Z., Wones D. R. 1998, Nomenclature of the micas. Canadian Mineralogist, vol. 36, pp. 41–48.
  12. Cathelineau M., Neiva D. 1985, A chlorite solid solution geothermometer the Los Asufres (Mexico) geothermal system. Contributions to Mineralogy and Petrology, vol. 91. pp. 235–244. https://doi.org/10.1007/BF00413350
  13. Erokhin Y. V., Khiller V. V., Ivanov K. S., Rylkov S. A., Bochkarev V. S. Mineralogy of metamorphic schists from the pre-Jurassic basement of the southern part of the Yamal Peninsula. Litosfera [Litosphere], pp. 136–140. (In Russ.)
  14. Ivanov K. S., Pisetsky V. B., Erokhin Y. V., Khiller V. V., Pogromskaya O. E. 2016, Geological structure and fluid dynamics of the basement of Western Siberia (in the east of the Khanty-Mansi Autonomous District). Ekaterinburg, 242 p.
  15. Ivanov K. S., Fedorov Y. N., Ponomarev V. S., Koroteev V. A., Erokhin Y. V. 2012, Nature and age of metamorphic rocks from the basement of the West Siberian megabasin (according to U–Pb isotopic dates). Doklady Earth Sciences, vol. 443, issue 2, pp. 321–325. https://doi.org/10.1134/S1028334X12030129
  16. Ivanov K. S., Fedorov Y. N., Erokhin Y. V., Ponomarev V. S. 2016, Geologicheskoye stroyeniye fundamenta Priural’skoy chasti Zapadno-Sibirskogo neftegazonosnogo megabasseyna [Geological structure of the basement of the Priuralsky part of the West Siberian petroleum-bearing megabasin]. Ekaterinburg, 302 p.
  17. Ivanov K. S., Koroteev V. A., Ponomarev V. S., Erokhin Y. V. 2018, Precambrian complexes of the West Siberian plate: problem and solution. Doklady Earth Sciences, vol. 482, issue 1, pp. 1152–1156. https://doi.org/10.1134/S1028334X18090234

The article was received on February 20, 2019

Лицензия Creative Commons
All articles posted on the site are available under the Creative Commons Attribution 4.0 Global License.